ITO靶材的核心用途是在磁控溅射工艺中作为“溅射源”。磁控溅射是一种常见的薄膜沉积技术,通过高能离子轰击靶材表面,使靶材原子被“敲击”出来,终沉积在基板上,形成一层均匀的ITO薄膜。这层薄膜厚度通常在几十到几百纳米之间,却能同时实现导电和透光的功能。
闭环之困:损耗与机遇并存
ITO靶材在溅射镀膜过程中利用率通常仅30%左右,大量含铟废料(废旧靶材、边角料、镀膜腔室废料)随之产生。过去,这些价值的废料往往被简单处理或堆积。建立从“废靶材→再生铟→新靶材”的闭环体系,成为破解资源约束的黄金路径。
铟回收的难点在于其“稀”与“散”。一部废旧手机含铟量不足0.02克,且深嵌于多层结构的液晶面板中,与玻璃、塑料、其他金属紧密复合。传统的物理拆解难以分离,湿法冶金(酸/碱浸出)则面临成分复杂、杂质干扰、易产生二次污染等严峻挑战。
技术破局:从粗放走向精纯
现代铟回收工艺已形成精细链条:
预处理与富集:机械破碎液晶屏 → 高温焚烧去除有机物 → 酸溶浸出(常用硫酸/盐酸),将铟等金属转入溶液。
深度分离提纯(核心技术):
溶剂萃取法:利用特定有机溶剂(如P204)选择性“捕获”溶液中的铟离子,实现与铁、锌、锡等杂质的深度分离,富集倍数可达千倍。
离子交换法:功能树脂吸附铟离子,适用于低浓度溶液提纯。
电解沉积:对富铟溶液通电,在阴极析出粗铟。
高纯精炼:对粗铟进行真空蒸馏、区域熔炼等,去除微量杂质(如镉、铅),产出纯度高达99.99%(4N)以上的精铟,满足高端ITO靶材要求。
绿色升级:循环经济的必由之路
相比开采原生矿(主要来自锌冶炼副产品),从电子垃圾中回收铟具有显著优势:
资源保障:1吨废弃液晶面板可提取200-300克铟,品位远超原矿。
节能减排:回收能耗仅为原生铟生产的1/3,大幅降低碳排放。
环境友好:减少电子垃圾填埋污染,避免采矿生态破坏。
经济可行:铟价高企(曾超1000美元/公斤)赋予回收强劲动力。